4 resultados para Evolution (Biology)

em Bucknell University Digital Commons - Pensilvania - USA


Relevância:

70.00% 70.00%

Publicador:

Resumo:

Telomeres are protective structures at the ends of eukaryotic chromosomes. The loss of telomeres through cell division and oxidative stress is related to cellular aging, organismal growth and disease. In this way, telomeres link molecular and cellular mechanisms with organismal processes, and may explain variation in a number of important life-history traits. Here, we discuss how telomere biology relates to the study of physiological ecology and life history evolution. We emphasize current knowledge on how telomeres may relate to growth, survival and lifespan in natural populations. We finish by examining interesting new connections between telomeres and the glucocorticoid stress response. Glucocorticoids are often employed as indices of physiological condition, and there is evidence that the glucocorticoid stress response is adaptive. We suggest that one way that glucocorticoids impact organismal survival is through elevated oxidative stress and telomere loss. Future work needs to establish and explore the link between the glucocorticoid stress response and telomere shortening in natural populations. If a link is found, it provides an explanatory mechanism by which environmental perturbation impacts life history trajectories.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In most eukaryotes, the kinetochore protein complex assembles at a single locus termed the centromere to attach chromosomes to spindle microtubules. Holocentric chromosomes have the unusual property of attaching to spindle microtubules along their entire length. Our mechanistic understanding of holocentric chromosome function is derived largely from studies in the nematode Caenorhabditis elegans, but holocentric chromosomes are found over a broad range of animal and plant species. In this review, we describe how holocentricity may be identified through cytological and molecular methods. By surveying the diversity of organisms with holocentric chromosomes, we estimate that the trait has arisen at least 13 independent times (four times in plants and at least nine times in animals). Holocentric chromosomes have inherent problems in meiosis because bivalents can attach to spindles in a random fashion. Interestingly, there are several solutions that have evolved to allow accurate meiotic segregation of holocentric chromosomes. Lastly, we describe how extensive genome sequencing and experiments in nonmodel organisms may allow holocentric chromosomes to shed light on general principles of chromosome segregation.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Evolutionary transitions between aquatic and terrestrial environments are common in vertebrate evolution. These transitions require major changes in most physiological functions, including feeding. Emydid turtles are ancestrally aquatic, with most species naturally feeding only in water, but some terrestrial species can modulate their feeding behavior appropriately for both media. In addition, many aquatic species can be induced to feed terrestrially. A comparison of feeding in both aquatic and terrestrial environments presents an excellent opportunity to investigate the evolution of terrestrial feeding from aquatic feeding, as well as a system within which to develop methods for studying major evolutionary transitions between environments. Individuals from eight species of emydid turtles (six aquatic, two terrestrial) were filmed while feeding underwater and on land. Bite kinematics were analyzed to determine whether aquatic turtles modulated their feeding behavior in a consistent and appropriate manner between environments. Aquatic turtles showed consistent changes between environments, taking longer bites and using more extensive motions of the jaw and hyoid when feeding on land. However, these motions differ from those shown by species that naturally feed in both environments and mostly do not seem to be appropriate for terrestrial feeding. For example, more extensive motions of the hyoid are only effective during underwater suction feeding. Emydids evolving to feed on land probably would have needed to evolve or learn to overcome many, but not all, aspects of the intrinsic emydid response to terrestrial feeding. Studies that investigate major evolutionary transitions must determine what responses to the new environment are shown by naïve individuals in order to fully understand the evolutionary patterns and processes associated with these transitions.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Ecomorphology and functional morphology are two distinct disciplines within biology that are often conflated and erroneously used interchangeably. By investigating the morphological distinctiveness of bottom-walking turtles relative to aquatic swimmers and terrestrial walkers, we can disentangle the effects of ecology and performance. Shell morphology, tail length, digit length, webbing length, and integumental differences were examined using dry and wet preserved specimens. Bottom-walkers were hypothesized to be distinct in all measurements. Instead, bottom-walkers were typically distinct from terrestrial taxa but not aquatic taxa, although for integumentary structures, only bottom-walkers were found to have significantly more integumentary structures than terrestrial turtles. This demonstrates that, despite sometimes highly differential locomotor modes, ecology, defined as habitat type, can show a stronger morphological signal than function.